
Patterns in the world of Web Application Development
Philip Roche (student number: 08299234 email: phil@philroche.net)

In the world of software, a pattern is a tangible manifestation of an
organization's tribal memory.

-Grady Booch

Most of my work involves web development with a strong focus on front end
development using frameworks to do most of the back-end work. Just as a
software developer encounters recurring problems so too does a front end web
developer.

This paper will be discussing the patterns, standards, conventions and best
practices that I have come across in different areas of development, and that I
now adhere to and use in my work. Each of the concepts or technologies are a
direct result of someone seeking a solution to a recurring problem, just like
design patterns in software.

Web Standards
Web standards is a somewhat misleading term as there are no defined
standards only recommendations by organisations like W3C. These
recommendations cover

• Valid HTML/XHTML code

• Semantically correct code

• Separation of content (HTML/XHTML), presentation (CSS) and
interaction/ behaviour (JavaScript)

The problems that these recommendations are trying to solve are many, the
main ones being maintainability of work, dealing with web browser
inconsistencies and making websites accessible to users that are not using a
regular desktop web browser (Web Accessibility).

During the early 90s there were two competing browser: Internet Explorer and
Netscape Navigator. These two browsers each had different takes on how
certain HTML elements should look and behave, they had their own proprietary
tags and technologies. This was an absolute nightmare for developers.
Standards like HTML4, XHTML CSS and Javascript were proposed and slowly
the browsers began to develop to those standards/ recommendations. It is
only now that (with the exception of Internet Explorer 6) developers can safely
ignore the inconsistencies and develop to the standards and be sure everything
will work as it should.

http://www.w3.org/
http://en.wikipedia.org/wiki/Web_accessibility

Another problem that kept cropping up was the difficulty in maintenance of
websites. The main reason for this was the mixing of presentation, content and
behaviour. Having inline Javascript and CSS and font tags in your HTML is
definitely going to cause problems down the line. One of the goals of Web
Standards is to solve this problem by separating presentation and content and
behaviour.

What this means is that the HTML will contain only content, the CSS will apply
the presentation and the Javascript will add the behaviour. This makes it very
easy to maintain.

Web Semantics
'Web Semantics' is a term used to describe content with metadata. Previously
when building a web page you would use tags like strong, b, i, font etc. These
tags give no real meaning to the content contained within them making them
very hard to understand, were you to try and parse that HTML.

The goal is to try and describe the content you are serving. Proper use of the
standards (XHTML) will aid in this by using h1 tags for your main heading etc.
But we need to be more granular about the description of our data. Best web
design practice is to consistently markup common architectural components in
the same way and projects like 'Web Design Practices' are there to solve the
problem of inconsistent markup. If you have an architectural component (like a
navigation section) on your page, you should use the markup to describe it as
such. This applies to branding, footer and search etc.

There are ways to markup up non-architectural content so as to describe it in
more detail. Microformats are a solution to the problem of inconsistent markup
on commonly occurring data, for example the Microformat hCard is designed to
help describe address or contact details. The hCalendar is to aid in the
description of calendar events. XFN (XML Friends Network) lets you describe
which links on your page are links to people you know, have met etc. All these
“patterns” make a web page a lot more machine readable too which is the
desired result of the semantic web.

Machine readability is the eventual goal but it will take a long time until all
developers are adhering to the same recommendations and markup patterns.
Standards like RDF (Resource Description Framework), RSS (Really Simple
Syndication), ATOM , OPML (Outline Processor Markup Language), FOAF
(Friend of a Friend), OpenId (dealing with digital identities), Oauth (protocol to
allow secure API authorisation), XMPP (Extensible Messaging and Presence
Protocol),APML (Attention Profiling Markup Language) and the Data Portability
initiative are an attempt to standardise the publishing of machine readable

http://www.dataportability.org/
http://www.apml.org/
http://xmpp.org/
http://oauth.net/
http://openid.net/
http://www.foaf-project.org/
http://www.opml.org/
http://www.atomenabled.org/
http://www.rssboard.org/
http://www.w3.org/RDF/
http://www.webdesignpractices.com/

content and data.

These standards/ conventions are guides on how to describe common content
and data and each solve a problem that developers have been having for a
long time.

Applications exist that implement and use this data, News readers like
NetNewsWire and Google Reader read OPML, RSS and ATOM feeds. Social
network sites use the APML, OpenId, Oauth and FOAF standards. Jabber chat
clients and other online chat clients use XMPP.

The Data Portability initiative (http://www.dataportability.org/) is a portal to
all these varying standards and conventions that have been proposed. It has
been very successful and more and more developers are implementing the
proposed guidelines.

Data Access
Most web applications require a database and as such a data access layer – to
write the data access layer each time would be very tedious. Projects like the
Subsonic Project, SQLObject, SQLAlchemy and Propel exist solving the problem
of creating data access layers as they do all this for you. These projects also
abstract the data access so that you can use any number of databases which is
very useful.

Template Engines
There is also the issue of web page generation, should a developer have to
deal with the generation of each page and each of it's components? Template
engines like Cheetah, Kid and Smarty solve these problems. As these projects
emerged it became apparent that another recurring problem needs solving –
namely how to separate the different layers (data access logic, business logic,
and presentation logic) of a web application, much the same as the need for
separation of presentation, content and behaviour in web standards.

The Data Access can be handled by the projects mentioned previously and the
front end rendering of pages handled by the template engines – but how do
you join them together.

Separation of Layers
The most common design pattern for separating the three layers of a web
application the MVC architectural design pattern. MVC is an acronym for Model
View Controller. The most popular application frameworks that use this pattern
are Ruby on Rails and the ASP.NET MVC framework. In the MVC pattern,
“Model” refers to the data access layer, “View” refers to the part of the system
that selects what to display and how to display it, and “Controller” refers to the

http://www.asp.net/mvc/
http://rubyonrails.org/
http://www.smarty.net/
http://www.kid-templating.org/
http://www.cheetahtemplate.org/
http://propel.phpdb.org/trac/
http://www.sqlalchemy.org/
http://sqlobject.org/
http://subsonicproject.com/
http://www.dataportability.org/
http://www.jabber.org/web/Main_Page
http://www.google.com/reader
http://ranchero.com/netnewswire/

part of the system that decides which view to use, depending on user input,
accessing the model as needed. The real power lies in the combination of the
MVC layers, which is something that the frameworks handle for you.

The Python framework Django uses a variation on MVC called MTV. “M” stands
for “Model,” the data access layer. “T” stands for “Template,” the presentation
layer. “V” stands for “View,” the business logic layer. This layer contains the
logic that accesses the model and defers to the appropriate template(s).

Using frameworks like these makes application development more about the
logic of the application rather than dealing with the implementation. Simple
application like a blogging system or a wiki can be rapidly built and deployed
and because of the separation of layers it makes it a lot easier to scale such
applications by adding database clusters, load balanced servers etc.

Transfer of Data
Most web applications have some sort of CRUD (Create, Read, Update and
Delete) operations. Patterns exist to standardise these operations.

The REST (Representational State Transfer) architecture aids in all these
operations. REST suggests the use of web services and the use of the HTTP
verbs POST (for create operations), GET (for read operations), PUT (for create
and update operations) and DELETE (for delete operations).

REST also promotes the use of readable (pretty urls) urls. The data sent to
REST services can be of any type XML, JSON or YAML. Other methods exist
solving the same problem like SOAP and XML RPC but REST or “RESTFul
services” are the most popular especially in the building of application APIs.

The Atom format is an extensible format and one of it's extensions is the
ATOMPub (or APP) application-level protocol for publishing and editing Web
Resources.

Protocols like ATOMPub and architectures like REST will hopefully bring an end
to custom created CRUD applications introducing a pseudo-standard for
applications like that.

Responsiveness of web applications
A problem that faced developers was building web applications that would feel
like desktop applications without having page reloads after every action.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://bitworking.org/projects/atom/rfc5023.html
http://www.djangoproject.com/%20

Javascript and Ajax (Asynchronous Javascript and XML) are now used to
achieve this effect. Essentially it means that instead of reloading the whole
page after every action you only need to update part of the page making the
application a lot more responsive and usable.

Instead of the browser making a hit to the server for the whole page,
Javascript uses the XMLHttpRequest method to publish or request data. This
data is then served in either XML, JSON (a plain text serialisation of data which
is less verbose than XML) which the Javascript parses and uses to update the
page. This is extremely popular method of building applications now but it does
have a requirement that the user must have Javascript enabled which goes
against Web Accessibility.

To solve this the concepts of “graceful degradation” and “unobtrusive
Javascript” were introduced where an application is built without any of these
enhancements with the enhancements to be added post page load using
Javascript. This means that the requirement for Javascript is removed and the
application remains accessible to those using clients without Javascript.

Front end Libraries
As mentioned before, Javascript is used a lot in application development, as
such many developers would be writing the same functionality again and
again. Libraries were written to make it easier for developers. Combined,
libraries like JQuery, Prototype, YUI, Mootools and MochiKit provide solutions to
practically any Javascript problem a developer might have encountered. JQuery
is the most advanced providing simplified methods for nearly all Javascript
operations.

The same happened with CSS too as developers would find themselves writing
the same CSS again and again. Frameworks like Blue Print CSS, YUI, YAML and
Tripoli provide ways to rapidly develop CSS layout without having to write each
line of CSS.

Interaction/ User Interface design
A well designed and intuitive user interface is key to an applications success. A
lot of research has been carried out on how users interact with user interfaces.
Heatmaps that analyse user interaction can be used (like ClickHeat from
LabsMedia) to help in optimising your design.

Tried and tested solutions to common design problems are available to use.
Examples would be site navigation, display of search results, a checkout
process, form layout, captcha for forms, calendars, shopping carts, product
listings, language selection, site maps, tag clouds, wizards, bread crumbs and
many more.

http://mochikit.com/
http://mootools.net/
http://developer.yahoo.com/yui/
http://www.prototypejs.org/
http://jquery.com/
http://devkick.com/lab/tripoli/
http://www.yaml.de/en/home.html
http://developer.yahoo.com/yui/%20
http://code.google.com/p/blueprintcss/
http://www.labsmedia.com/index.html
http://www.labsmedia.com/clickheat/index.html

Sites like webdesignpractices.com, welie.com and ui-patterns.com provide
comprehensive lists and example of visual design and user interface patterns.

Conclusion
As with design patterns in software development, it is up to the software
engineer to recognise problems and be aware that there are patterns that can
be applied to solve these problems, so too it is the onus of the web developer
to be aware of the interaction and user interface, semantic patterns etc. and to
apply them appropriately to problems they encounter.

I have been involved in the web development and standards community for a
few years now and it is a testament to “open source” philosophies that the
patterns described above have emerged – In Booch's quote above – it is this
community that are the organisation and the standards, patterns and best
practices that are their tribal memory.

Resources and references:
• Microformats (http://microformats.org/)

• RDF (http://www.w3.org/RDF/)

• RSS (http://www.rssboard.org/)

• ATOM (http://www.atomenabled.org/)

• OPML (http://www.opml.org/)

• FOAF (http://www.foaf-project.org/)

• OpenId (http://openid.net/)

• Oauth (http://oauth.net/)

• XMPP (http://xmpp.org/)

• APML (http://www.apml.org/)

• Data Portability (http://www.dataportability.org/)

• SubSonicProject (http://subsonicproject.com/)

• SQLObject (http://sqlobject.org/)

• SQLAlchemy (http://www.sqlalchemy.org/)

• Propel (http://propel.phpdb.org/trac/)

• Cheetah (http://www.cheetahtemplate.org/)

• Kid (http://www.kid-templating.org/)

• Smarty (http://www.smarty.net/)

• Django (http://www.djangoproject.com/)

• Ruby on Rails (http://rubyonrails.org/)

http://www.sqlalchemy.org/
http://microformats.org/
http://sqlobject.org/
http://subsonicproject.com/
http://www.dataportability.org/
http://www.apml.org/
http://xmpp.org/
http://oauth.net/
http://openid.net/
http://www.foaf-project.org/
http://www.opml.org/
http://www.atomenabled.org/
http://www.rssboard.org/
http://www.w3.org/RDF/
http://propel.phpdb.org/trac/
http://rubyonrails.org/
http://www.djangoproject.com/
http://www.smarty.net/
http://www.kid-templating.org/
http://www.cheetahtemplate.org/
http://www.webdesignpractices.com/
http://www.welie.com/patterns/index.php
http://ui-patterns.com/patterns

• ASP.NET MVC (http://www.asp.net/mvc/)

• ATOMPub (http://bitworking.org/projects/atom/rfc5023.html)

• REST (http://en.wikipedia.org/wiki/Representational_State_Transfer)

• JQuery (http://jquery.com/)

• Prototype (http://www.prototypejs.org/)

• Mootools (http://mootools.net/)

• MochiKit (http://mochikit.com/)

• YUI (http://developer.yahoo.com/yui/)

• BluePrintCSS (http://code.google.com/p/blueprintcss/)

• YAML (http://www.yaml.de/en/home.html)

• Tripoli (http://devkick.com/lab/tripoli/)

• Web Design Practices (http://www.webdesignpractices.com/)

• UI – Patterns (http://ui-patterns.com/resources)

• Interaction Design Patterns (http://www.welie.com/index.php)

• YUI Design Patterns (http://developer.yahoo.com/ypatterns/)

http://developer.yahoo.com/ypatterns/
http://www.welie.com/index.php
http://ui-patterns.com/resources
http://www.webdesignpractices.com/
http://devkick.com/lab/tripoli/
http://www.yaml.de/en/home.html
http://code.google.com/p/blueprintcss/
http://developer.yahoo.com/yui/
http://mochikit.com/
http://mootools.net/
http://www.prototypejs.org/
http://jquery.com/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://bitworking.org/projects/atom/rfc5023.html
http://www.asp.net/mvc/

	Patterns in the world of Web Application Development
	Web Standards
	Web Semantics
	Data Access
	Template Engines
	Separation of Layers
	Transfer of Data
	Responsiveness of web applications
	Front end Libraries
	Interaction/ User Interface design
	Conclusion
	Resources and references:

